Skip to main content

Chapter 1: Substrate

1.6 Formal Synthesis

End of Chapter 1

Avoiding the shifting sands of space and time, our inquiry anchors the universe in the bedrock of discrete events and causal links. By rejecting the siren call of the continuum, this chapter establishes a finite, computable substrate where "where" is defined strictly by connectivity and "when" by the relentless iterator tLt_L. The graph is a living record of existence, growing step by step from a definitive origin.

Yet, raw potential is indistinguishable from chaos; without legislation, the graph risks tangling into circular logic or fragmenting into disjoint realities. The urgent need for constraints becomes clear: a physical universe must be more than mathematically possible, it must be causally coherent. The infinite degrees of freedom require pruning to ensure history remains linear and logic remains sound.

The substance of reality is now established, but its laws remain unwritten. To carve a cosmos out of this raw potential, strict axioms must distinguish the physically valid from the merely constructible. We turn now to Chapter 2, where the fundamental rules of existence will be enacted.


Table of Symbols

SymbolDescriptionContext / First Used
S\mathfrak{S}A finite formal system§1.1.1
A\mathcal{A}The Axiomatic Basis (set of foundational postulates)§1.1.1
D\mathfrak{D}A Formal Deductive System tuple (L,A,I)(\mathcal{L}, \mathcal{A}, \mathcal{I})§1.1.2
L\mathcal{L}The Formal Language (alphabet and grammar)§1.1.2
I\mathcal{I}The set of Rules of Inference§1.1.2
\vdashSyntactic derivability (provability)§1.1.2
\modelsSemantic entailment (truth)§1.1.2
Γ\GammaA set of premises§1.1.2
θ\thetaA derived theorem§1.1.2
F\mathfrak{F}A consistent system capable of primitive recursive arithmetic§1.1.3
G\mathcal{G}The Gödel sentence (true but unprovable)§1.1.3
Con(F)Con(\mathfrak{F})The consistency statement of system F\mathfrak{F}§1.1.3
\perpLogical contradiction§1.1.6
tLt_LGlobal Logical Time (discrete iteration counter)§1.2.1
tphyst_{phys}Physical Time (emergent, geometric)§1.2.1
N0\mathbb{N}_0Set of non-negative integers (Domain of tLt_L)§1.2.1
UtLU_{t_L}Global state of the universe at step tLt_L§1.2.2
U\mathcal{U}Universal Evolution Operator§1.2.2
H^\hat{H}Hamiltonian Operator§1.2.2
Ψ\PsiWavefunction of the universe§1.2.2
τ\tauFictitious time parameter (Stochastic Quantization)§1.2.2.1
μ\muRenormalization scale§1.2.2.1
P^\hat{P}Permutation Operator (CAI interpretation)§1.2.2.2
T\mathcal{T}Unimodular Time variable§1.2.2.3
Λ,Λ^\Lambda, \hat{\Lambda}Cosmological Constant (variable/operator)§1.2.2.3
S(U)S(U)Information content/Entropy of state UU§1.2.3
O()\mathcal{O}(\cdot)Big O notation (asymptotic growth)§1.2.3
Ωt\Omega_tSet of admissible physical states at time tt§1.2.3.1
bbFinite Branching factor§1.2.3.1
sts_tSurface area (active degrees of freedom)§1.2.3.1
δ\deltaHolographic scaling constant§1.2.3.1
TTTemporal Domain (Set of integers)§1.2.4.1
Z0\mathbb{Z}_{\le 0}Set of non-positive integers (Infinite Past domain)§1.2.4.1
H\mathcal{H}History sequence (set of operations)§1.2.4.1
μ\muMean of entropy production (Context: Statistics)§1.2.4.1
σ2\sigma^2Variance of entropy production§1.2.4.1
ΔIk\Delta I_kInformation bit contribution§1.2.4.1
Ω\OmegaUniversal State Space (Set of all admissible graphs)§1.2.5.1
T\mathcal{T}Trajectory sequence (Context: Recurrence Proof)§1.2.5.1
\precStrict causal precedence§1.2.5.1
ϵ(op)\epsilon(op)Energy cost per operation§1.2.6.1
EtotalE_{total}Total energy dissipated§1.2.6.1
kBk_BBoltzmann constant§1.2.6.2
TTTemperature (Context: Thermodynamics)§1.2.6.2
\hbarReduced Planck constant§1.2.6.2
ccSpeed of light§1.2.6.2
GμνG_{\mu\nu}Einstein Tensor§1.2.6.2
TμνT_{\mu\nu}Stress-Energy Tensor§1.2.6.2
RsR_sSchwarzschild Radius§1.2.6.2
U0U_0The unique initial state§1.2.7
RnR_nThe nn-th Grim Reaper entity§1.2.7.2
GGA specific Causal Graph (V,E,H)(V, E, H)§1.3.1
VVSet of Vertices (Abstract Events)§1.3.1
EESet of Directed Edges (Causal Relations)§1.3.1
HHHistory Function (Timestamp map ENE \to \mathbb{N})§1.3.1
v,u,wv, u, wIndividual vertices§1.3.1
eeIndividual edge (u,v)(u, v)§1.3.1
In(u)\text{In}(u)Set of incoming edges to vertex uu§1.3.4.1
T\mathfrak{T}Elementary Task Space§1.4.1
Tadd\mathfrak{T}_{add}Primitive Task: Edge Addition§1.4.2
Tdel\mathfrak{T}_{del}Primitive Task: Edge Deletion§1.4.2
ΔF\Delta FChange in Free Energy§1.4.5
VA,VBV_A, V_BDisjoint vertex partitions (Bipartite definition)§1.5.1